Low dimensional reaction kinetics and self-organization

نویسنده

  • R. Kopelman
چکیده

Kopelman, R., Anacker, L.W., Clement, E., Li, L. and Sander, L., 1991. Low dimensional reaction kinetics and self-organization. Chemometrics and Intelligent Laboratory Systems, 10: 127-132. Diffusion-limited reaction kinetics becomes anomalous not only for fractals, with their anomalous diffusion, but also for low-dimensional (one and two) and disperse media, where the random walk is compact. We focus on annihilation, recombination and trapping reactions under non-equilibrium steady state (steady source) or batch (big bang) conditions. The typical reactions are: A+A+Products, A+B+Products and A+C -D Products. We are interested in the global rate laws, and their relation to particle-particle distributions (e.g., pair-correlation and nearest-neighbor distribution functions) and in local rate laws (if definable). Anomalous reaction kinetics (more than classical kinetics) is particularly sensitive to initial conditions, source term structure, conservation laws (e.g., equal densities for A and B), excluded volume effects, and medium size, dimensionality and anisotropy. Analytical formalisms, scaling arguments, computer (and supercomputer) simulations and experiments (on chemical and physical reactions) all play an important role in the newly emerging picture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation.

Conventional equations for enzyme kinetics are based on mass-action laws, that may fail in low-dimensional and disordered media such as biological membranes. We present Monte Carlo simulations of an isolated Michaelis-Menten enzyme reaction on two-dimensional lattices with varying obstacle densities, as models of biological membranes. The model predicts that, as a result of anomalous diffusion ...

متن کامل

Products of the Self-Reaction of HCO Radicals: Theoretical Kinetics Studies

The mechanism of the self-reaction of HCO radicals is investigated by using high-level quantum-chemical methods including M05-2X, CCSD, CCSD(T) and CRCC(2,3). Next, the rate coefficients for several product channels as a function of pressure and temperature are computed by employing statistical rate theories. Four important product channels are predicted to be CO + CO + H2, HCOH + OH, cis-(HCO)...

متن کامل

Chemical Kinetics for Reaction of 5-Nitro-1H-benzo[d]imidazole to Produce 6-Nitro-1H-benzo[d]imidazole and Calculation of Heat Capacity of Activation

The kinetics and mechanism of the reaction of 5-nitro-1H-benzo[d] imidazole to produce 6-nitro-1H-benzo[d] imidazole was studied by employing hybrid meta-density functional theory. MPWBlK/6-31+G** level calculations were carried out to obtain energies and optimize the geometries of all stationary points along the PES, and determine the harmonic vibrational frequencies. Two transition states (TS...

متن کامل

Reaction Kinetics in Restricted Spaces

Reactions in restricted spaces rarely get stirred vigorously by convection and are thus controlled by diffusion. Furthermore, the compactness of the Brownian motion leads to both anomalous diffusion and anomalous reaction kinetics. Elementary binary reactions of the type A + A + Products, A + B + Products, and A + C + C + Products are discussed theoretically for both batch and steady-state cond...

متن کامل

The diffusion-limited reaction A + A-+ 0 in the steady state: influence of correlations in the source

We study theoretically the kinetics of the diffusion-limited reaction A+A-+O in the steady state. We consider the effect of an external source which adds correlated pairs of particles. We show that in dimensions below 2 and in the low-density limit spatial self-organization of reactants occurs and is controlled by the correlation in the source term. At higher densities there is a crossover to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001